In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction

نویسندگان

  • Anne Steins
  • Pieter Dik
  • Wally H. Müller
  • Stephin J. Vervoort
  • Kerstin Reimers
  • Jörn W. Kuhbier
  • Peter M. Vogt
  • Aart A. van Apeldoorn
  • Paul J. Coffer
  • Koen Schepers
  • Xiaohua Liu
چکیده

Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs), which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spider Silk as Guiding Biomaterial for Human Model Neurons

Over the last years, a number of therapeutic strategies have emerged to promote axonal regeneration. An attractive strategy is the implantation of biodegradable and nonimmunogenic artificial scaffolds into injured peripheral nerves. In previous studies, transplantation of decellularized veins filled with spider silk for bridging critical size nerve defects resulted in axonal regeneration and re...

متن کامل

Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification.

Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with ...

متن کامل

Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored...

متن کامل

Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.

Spider silk shows great potential as a biomaterial: in addition to biocompatibility and biodegradability, its strength and toughness are greater than native biological fibres (e.g. collagen), with toughness exceeding that of synthetic fibres (e.g. nylon). Although the ultimate tensile strength and toughness at failure are unlikely to be limiting factors, its yield strain of 2% is insufficient, ...

متن کامل

The method of purifying bioengineered spider silk determines the silk sphere properties

Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2-the spidroin of Nephila clavipes dragline s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015